Short term memory by transient oscillatory dynamics in recurrent neural networks

29 Oct 2020  ·  Kohei Ichikawa, Kunihiko Kaneko ·

Despite the significance of short-term memory in cognitive function, the process of encoding and sustaining the input information in neural activity dynamics remains elusive. Herein, we unveiled the significance of transient neural dynamics to short-term memory. By training recurrent neural networks to short-term memory tasks and analyzing the dynamics, the characteristics of the short-term memory mechanism were obtained in which the input information was encoded in the amplitude of transient oscillations, rather than the stationary neural activities. This transient trajectory was attracted to a slow manifold, which permitted the discarding of irrelevant information. Additionally, we investigated the process by which the dynamics acquire robustness to noise. In this transient oscillation, the robustness to noise was obtained by a strong contraction of the neural states after perturbation onto the manifold. This mechanism works for several neural network models and tasks, which implies its relevance to neural information processing in general.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here