Sifting through the noise: Universal first-order methods for stochastic variational inequalities

We examine a flexible algorithmic framework for solving monotone variational inequalities in the presence of randomness and uncertainty. The proposed template encompasses a wide range of popular first-order methods, including dual averaging, dual extrapolation and optimistic gradient algorithms – both adaptive and non-adaptive. Our first result is that the algorithm achieves the optimal rates of convergence for cocoercive problems when the profile of the randomness is known to the optimizer: $\mathcal{O}(1/\sqrt{T})$ for absolute noise profiles, and $\mathcal{O}(1/T)$ for relative ones. Subsequently, we drop all prior knowledge requirements (the absolute/relative variance of the randomness affecting the problem, the operator's cocoercivity constant, etc.), and we analyze an adaptive instance of the method that gracefully interpolates between the above rates – i.e. it achieves $\mathcal{O}(1/\sqrt{T})$ and $\mathcal{O}(1/T)$ in the absolute and relative cases, respectively. To our knowledge, this is the first universality result of its kind in the literature and, somewhat surprisingly, it shows that an extra-gradient proxy step is not required to achieve optimal rates.

PDF Abstract NeurIPS 2021 PDF NeurIPS 2021 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here