Signed Binary Weight Networks

25 Nov 2022  ·  Sachit Kuhar, Alexey Tumanov, Judy Hoffman ·

Efficient inference of Deep Neural Networks (DNNs) is essential to making AI ubiquitous. Two important algorithmic techniques have shown promise for enabling efficient inference - sparsity and binarization. These techniques translate into weight sparsity and weight repetition at the hardware-software level enabling the deployment of DNNs with critically low power and latency requirements. We propose a new method called signed-binary networks to improve efficiency further (by exploiting both weight sparsity and weight repetition together) while maintaining similar accuracy. Our method achieves comparable accuracy on ImageNet and CIFAR10 datasets with binary and can lead to 69% sparsity. We observe real speedup when deploying these models on general-purpose devices and show that this high percentage of unstructured sparsity can lead to a further reduction in energy consumption on ASICs.

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here