Simple Cycle Reservoirs are Universal

21 Aug 2023  ·  Boyu Li, Robert Simon Fong, Peter Tiňo ·

Reservoir computation models form a subclass of recurrent neural networks with fixed non-trainable input and dynamic coupling weights. Only the static readout from the state space (reservoir) is trainable, thus avoiding the known problems with propagation of gradient information backwards through time. Reservoir models have been successfully applied in a variety of tasks and were shown to be universal approximators of time-invariant fading memory dynamic filters under various settings. Simple cycle reservoirs (SCR) have been suggested as severely restricted reservoir architecture, with equal weight ring connectivity of the reservoir units and input-to-reservoir weights of binary nature with the same absolute value. Such architectures are well suited for hardware implementations without performance degradation in many practical tasks. In this contribution, we rigorously study the expressive power of SCR in the complex domain and show that they are capable of universal approximation of any unrestricted linear reservoir system (with continuous readout) and hence any time-invariant fading memory filter over uniformly bounded input streams.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here