Paper

Simple Training Strategies and Model Scaling for Object Detection

The speed-accuracy Pareto curve of object detection systems have advanced through a combination of better model architectures, training and inference methods. In this paper, we methodically evaluate a variety of these techniques to understand where most of the improvements in modern detection systems come from. We benchmark these improvements on the vanilla ResNet-FPN backbone with RetinaNet and RCNN detectors. The vanilla detectors are improved by 7.7% in accuracy while being 30% faster in speed. We further provide simple scaling strategies to generate family of models that form two Pareto curves, named RetinaNet-RS and Cascade RCNN-RS. These simple rescaled detectors explore the speed-accuracy trade-off between the one-stage RetinaNet detectors and two-stage RCNN detectors. Our largest Cascade RCNN-RS models achieve 52.9% AP with a ResNet152-FPN backbone and 53.6% with a SpineNet143L backbone. Finally, we show the ResNet architecture, with three minor architectural changes, outperforms EfficientNet as the backbone for object detection and instance segmentation systems.

Results in Papers With Code
(↓ scroll down to see all results)