Simplicity Bias Leads to Amplified Performance Disparities

13 Dec 2022  ·  Samuel J. Bell, Levent Sagun ·

Which parts of a dataset will a given model find difficult? Recent work has shown that SGD-trained models have a bias towards simplicity, leading them to prioritize learning a majority class, or to rely upon harmful spurious correlations. Here, we show that the preference for "easy" runs far deeper: A model may prioritize any class or group of the dataset that it finds simple-at the expense of what it finds complex-as measured by performance difference on the test set. When subsets with different levels of complexity align with demographic groups, we term this difficulty disparity, a phenomenon that occurs even with balanced datasets that lack group/label associations. We show how difficulty disparity is a model-dependent quantity, and is further amplified in commonly-used models as selected by typical average performance scores. We quantify an amplification factor across a range of settings in order to compare disparity of different models on a fixed dataset. Finally, we present two real-world examples of difficulty amplification in action, resulting in worse-than-expected performance disparities between groups even when using a balanced dataset. The existence of such disparities in balanced datasets demonstrates that merely balancing sample sizes of groups is not sufficient to ensure unbiased performance. We hope this work presents a step towards measurable understanding of the role of model bias as it interacts with the structure of data, and call for additional model-dependent mitigation methods to be deployed alongside dataset audits.

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods