Simultaneously Learning Stochastic and Adversarial Episodic MDPs with Known Transition

NeurIPS 2020  ·  Tiancheng Jin, Haipeng Luo ·

This work studies the problem of learning episodic Markov Decision Processes with known transition and bandit feedback. We develop the first algorithm with a ``best-of-both-worlds'' guarantee: it achieves $\mathcal{O}(log T)$ regret when the losses are stochastic, and simultaneously enjoys worst-case robustness with $\tilde{\mathcal{O}}(\sqrt{T})$ regret even when the losses are adversarial, where $T$ is the number of episodes. More generally, it achieves $\tilde{\mathcal{O}}(\sqrt{C})$ regret in an intermediate setting where the losses are corrupted by a total amount of $C$. Our algorithm is based on the Follow-the-Regularized-Leader method from Zimin and Neu (2013), with a novel hybrid regularizer inspired by recent works of Zimmert et al. (2019a, 2019b) for the special case of multi-armed bandits. Crucially, our regularizer admits a non-diagonal Hessian with a highly complicated inverse. Analyzing such a regularizer and deriving a particular self-bounding regret guarantee is our key technical contribution and might be of independent interest.

PDF Abstract NeurIPS 2020 PDF NeurIPS 2020 Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here