Singular ridge regression with homoscedastic residuals: generalization error with estimated parameters

29 May 2016  ·  Lyudmila Grigoryeva, Juan-Pablo Ortega ·

This paper characterizes the conditional distribution properties of the finite sample ridge regression estimator and uses that result to evaluate total regression and generalization errors that incorporate the inaccuracies committed at the time of parameter estimation. The paper provides explicit formulas for those errors... Unlike other classical references in this setup, our results take place in a fully singular setup that does not assume the existence of a solution for the non-regularized regression problem. In exchange, we invoke a conditional homoscedasticity hypothesis on the regularized regression residuals that is crucial in our developments. read more

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here