Paper

Sketch2PQ: Freeform Planar Quadrilateral Mesh Design via a Single Sketch

The freeform architectural modeling process often involves two important stages: concept design and digital modeling. In the first stage, architects usually sketch the overall 3D shape and the panel layout on a physical or digital paper briefly. In the second stage, a digital 3D model is created using the sketch as a reference. The digital model needs to incorporate geometric requirements for its components, such as the planarity of panels due to consideration of construction costs, which can make the modeling process more challenging. In this work, we present a novel sketch-based system to bridge the concept design and digital modeling of freeform roof-like shapes represented as planar quadrilateral (PQ) meshes. Our system allows the user to sketch the surface boundary and contour lines under axonometric projection and supports the sketching of occluded regions. In addition, the user can sketch feature lines to provide directional guidance to the PQ mesh layout. Given the 2D sketch input, we propose a deep neural network to infer in real-time the underlying surface shape along with a dense conjugate direction field, both of which are used to extract the final PQ mesh. To train and validate our network, we generate a large synthetic dataset that mimics architect sketching of freeform quadrilateral patches. The effectiveness and usability of our system are demonstrated with quantitative and qualitative evaluation as well as user studies.

Results in Papers With Code
(↓ scroll down to see all results)