Sketching and Neural Networks

19 Apr 2016  ·  Amit Daniely, Nevena Lazic, Yoram Singer, Kunal Talwar ·

High-dimensional sparse data present computational and statistical challenges for supervised learning. We propose compact linear sketches for reducing the dimensionality of the input, followed by a single layer neural network... We show that any sparse polynomial function can be computed, on nearly all sparse binary vectors, by a single layer neural network that takes a compact sketch of the vector as input. Consequently, when a set of sparse binary vectors is approximately separable using a sparse polynomial, there exists a single-layer neural network that takes a short sketch as input and correctly classifies nearly all the points. Previous work has proposed using sketches to reduce dimensionality while preserving the hypothesis class. However, the sketch size has an exponential dependence on the degree in the case of polynomial classifiers. In stark contrast, our approach of using improper learning, using a larger hypothesis class allows the sketch size to have a logarithmic dependence on the degree. Even in the linear case, our approach allows us to improve on the pesky $O({1}/{{\gamma}^2})$ dependence of random projections, on the margin $\gamma$. We empirically show that our approach leads to more compact neural networks than related methods such as feature hashing at equal or better performance. read more

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here