Skip-Connected Self-Recurrent Spiking Neural Networks with Joint Intrinsic Parameter and Synaptic Weight Training

23 Oct 2020  ·  Wenrui Zhang, Peng Li ·

As an important class of spiking neural networks (SNNs), recurrent spiking neural networks (RSNNs) possess great computational power and have been widely used for processing sequential data like audio and text. However, most RSNNs suffer from two problems. 1. Due to a lack of architectural guidance, random recurrent connectivity is often adopted, which does not guarantee good performance. 2. Training of RSNNs is in general challenging, bottlenecking achievable model accuracy. To address these problems, we propose a new type of RSNNs called Skip-Connected Self-Recurrent SNNs (ScSr-SNNs). Recurrence in ScSr-SNNs is introduced in a stereotyped manner by adding self-recurrent connections to spiking neurons, which implements local memory. The network dynamics is enriched by skip connections between nonadjacent layers. Constructed by simplified self-recurrent and skip connections, ScSr-SNNs are able to realize recurrent behaviors similar to those of more complex RSNNs while the error gradients can be more straightforwardly calculated due to the mostly feedforward nature of the network. Moreover, we propose a new backpropagation (BP) method called backpropagated intrinsic plasticity (BIP) to further boost the performance of ScSr-SNNs by training intrinsic model parameters. Unlike standard intrinsic plasticity rules that adjust the neuron's intrinsic parameters according to neuronal activity, the proposed BIP methods optimize intrinsic parameters based on the backpropagated error gradient of a well-defined global loss function in addition to synaptic weight training. Based upon challenging speech and neuromorphic speech datasets including TI46-Alpha, TI46-Digits, and N-TIDIGITS, the proposed ScSr-SNNs can boost performance by up to 2.55% compared with other types of RSNNs trained by state-of-the-art BP methods.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here