Slope Stability Analysis with Geometric Semantic Genetic Programming

30 Aug 2017  ·  Juncai Xu, Zhenzhong Shen, Qingwen Ren, Xin Xie, Zhengyu Yang ·

Genetic programming has been widely used in the engineering field. Compared with the conventional genetic programming and artificial neural network, geometric semantic genetic programming (GSGP) is superior in astringency and computing efficiency. In this paper, GSGP is adopted for the classification and regression analysis of a sample dataset. Furthermore, a model for slope stability analysis is established on the basis of geometric semantics. According to the results of the study based on GSGP, the method can analyze slope stability objectively and is highly precise in predicting slope stability and safety factors. Hence, the predicted results can be used as a reference for slope safety design.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here