Small nonlinearities in activation functions create bad local minima in neural networks

ICLR 2019  ·  Chulhee Yun, Suvrit Sra, Ali Jadbabaie ·

We investigate the loss surface of neural networks. We prove that even for one-hidden-layer networks with "slightest" nonlinearity, the empirical risks have spurious local minima in most cases. Our results thus indicate that in general "no spurious local minima" is a property limited to deep linear networks, and insights obtained from linear networks may not be robust. Specifically, for ReLU(-like) networks we constructively prove that for almost all practical datasets there exist infinitely many local minima. We also present a counterexample for more general activations (sigmoid, tanh, arctan, ReLU, etc.), for which there exists a bad local minimum. Our results make the least restrictive assumptions relative to existing results on spurious local optima in neural networks. We complete our discussion by presenting a comprehensive characterization of global optimality for deep linear networks, which unifies other results on this topic.

PDF Abstract ICLR 2019 PDF ICLR 2019 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods