SMDT: Selective Memory-Augmented Neural Document Translation

5 Jan 2022  ·  Xu Zhang, Jian Yang, Haoyang Huang, Shuming Ma, Dongdong Zhang, Jinlong Li, Furu Wei ·

Existing document-level neural machine translation (NMT) models have sufficiently explored different context settings to provide guidance for target generation. However, little attention is paid to inaugurate more diverse context for abundant context information. In this paper, we propose a Selective Memory-augmented Neural Document Translation model to deal with documents containing large hypothesis space of the context. Specifically, we retrieve similar bilingual sentence pairs from the training corpus to augment global context and then extend the two-stream attention model with selective mechanism to capture local context and diverse global contexts. This unified approach allows our model to be trained elegantly on three publicly document-level machine translation datasets and significantly outperforms previous document-level NMT models.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here