Smooth minimization of nonsmooth functions with parallel coordinate descent methods

23 Sep 2013  ·  Olivier Fercoq, Peter Richtárik ·

We study the performance of a family of randomized parallel coordinate descent methods for minimizing the sum of a nonsmooth and separable convex functions. The problem class includes as a special case L1-regularized L1 regression and the minimization of the exponential loss ("AdaBoost problem"). We assume the input data defining the loss function is contained in a sparse $m\times n$ matrix $A$ with at most $\omega$ nonzeros in each row. Our methods need $O(n \beta/\tau)$ iterations to find an approximate solution with high probability, where $\tau$ is the number of processors and $\beta = 1 + (\omega-1)(\tau-1)/(n-1)$ for the fastest variant. The notation hides dependence on quantities such as the required accuracy and confidence levels and the distance of the starting iterate from an optimal point. Since $\beta/\tau$ is a decreasing function of $\tau$, the method needs fewer iterations when more processors are used. Certain variants of our algorithms perform on average only $O(\nnz(A)/n)$ arithmetic operations during a single iteration per processor and, because $\beta$ decreases when $\omega$ does, fewer iterations are needed for sparser problems.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here