Smoothing Entailment Graphs with Language Models

30 Jul 2022  ·  Nick McKenna, Tianyi Li, Mark Johnson, Mark Steedman ·

The diversity and Zipfian frequency distribution of natural language predicates in corpora leads to sparsity in Entailment Graphs (EGs) built by Open Relation Extraction (ORE). EGs are computationally efficient and explainable models of natural language inference, but as symbolic models, they fail if a novel premise or hypothesis vertex is missing at test-time. We present theory and methodology for overcoming such sparsity in symbolic models. First, we introduce a theory of optimal smoothing of EGs by constructing transitive chains. We then demonstrate an efficient, open-domain, and unsupervised smoothing method using an off-the-shelf Language Model to find approximations of missing premise predicates. This improves recall by 25.1 and 16.3 percentage points on two difficult directional entailment datasets, while raising average precision and maintaining model explainability. Further, in a QA task we show that EG smoothing is most useful for answering questions with lesser supporting text, where missing premise predicates are more costly. Finally, controlled experiments with WordNet confirm our theory and show that hypothesis smoothing is difficult, but possible in principle.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here