Snapshot Compressive Imaging: Principle, Implementation, Theory, Algorithms and Applications

7 Mar 2021  ·  Xin Yuan, David J. Brady, Aggelos K. Katsaggelos ·

Capturing high-dimensional (HD) data is a long-term challenge in signal processing and related fields. Snapshot compressive imaging (SCI) uses a two-dimensional (2D) detector to capture HD ($\ge3$D) data in a {\em snapshot} measurement. Via novel optical designs, the 2D detector samples the HD data in a {\em compressive} manner; following this, algorithms are employed to reconstruct the desired HD data-cube. SCI has been used in hyperspectral imaging, video, holography, tomography, focal depth imaging, polarization imaging, microscopy, \etc.~Though the hardware has been investigated for more than a decade, the theoretical guarantees have only recently been derived. Inspired by deep learning, various deep neural networks have also been developed to reconstruct the HD data-cube in spectral SCI and video SCI. This article reviews recent advances in SCI hardware, theory and algorithms, including both optimization-based and deep-learning-based algorithms. Diverse applications and the outlook of SCI are also discussed.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here