Soft-wired long-term memory in a natural recurrent neuronal network

1 Apr 2020  ·  Miguel A. Casal, Santiago Galella, Oscar Vilarroya, Jordi Garcia-Ojalvo ·

Neuronal networks provide living organisms with the ability to process information. They are also characterized by abundant recurrent connections, which give rise to strong feedback that dictates their dynamics and endows them with fading (short-term) memory. The role of recurrence in long-term memory, on the other hand, is still unclear. Here we use the neuronal network of the roundworm C. elegans to show that recurrent architectures in living organisms can exhibit long-term memory without relying on specific hard-wired modules. A genetic algorithm reveals that the experimentally observed dynamics of the worm's neuronal network exhibits maximal complexity (as measured by permutation entropy). In that complex regime, the response of the system to repeated presentations of a time-varying stimulus reveals a consistent behavior that can be interpreted as soft-wired long-term memory.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here