Solving Stochastic Games

NeurIPS 2009  ·  Liam M. Dermed, Charles L. Isbell ·

Solving multi-agent reinforcement learning problems has proven difficult because of the lack of tractable algorithms. We provide the first approximation algorithm which solves stochastic games to within $\epsilon$ relative error of the optimal game-theoretic solution, in time polynomial in $1/\epsilon$... Our algorithm extends Murrays and Gordon’s (2007) modified Bellman equation which determines the \emph{set} of all possible achievable utilities; this provides us a truly general framework for multi-agent learning. Further, we empirically validate our algorithm and find the computational cost to be orders of magnitude less than what the theory predicts. read more

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here