Some Inapproximability Results of MAP Inference and Exponentiated Determinantal Point Processes

2 Sep 2021  ·  Naoto Ohsaka ·

We study the computational complexity of two hard problems on determinantal point processes (DPPs). One is maximum a posteriori (MAP) inference, i.e., to find a principal submatrix having the maximum determinant. The other is probabilistic inference on exponentiated DPPs (E-DPPs), which can sharpen or weaken the diversity preference of DPPs with an exponent parameter $p$. We present several complexity-theoretic hardness results that explain the difficulty in approximating MAP inference and the normalizing constant for E-DPPs. We first prove that unconstrained MAP inference for an $n \times n$ matrix is $\textsf{NP}$-hard to approximate within a factor of $2^{\beta n}$, where $\beta = 10^{-10^{13}} $. This result improves upon the best-known inapproximability factor of $(\frac{9}{8}-\epsilon)$, and rules out the existence of any polynomial-factor approximation algorithm assuming $\textsf{P} \neq \textsf{NP}$. We then show that log-determinant maximization is $\textsf{NP}$-hard to approximate within a factor of $\frac{5}{4}$ for the unconstrained case and within a factor of $1+10^{-10^{13}}$ for the size-constrained monotone case. In particular, log-determinant maximization does not admit a polynomial-time approximation scheme unless $\textsf{P} = \textsf{NP}$. As a corollary of the first result, we demonstrate that the normalizing constant for E-DPPs of any (fixed) constant exponent $p \geq \beta^{-1} = 10^{10^{13}}$ is $\textsf{NP}$-hard to approximate within a factor of $2^{\beta pn}$, which is in contrast to the case of $p \leq 1$ admitting a fully polynomial-time randomized approximation scheme.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here