Sparse arrays of signatures for online character recognition

1 Aug 2013  ·  Benjamin Graham ·

In mathematics the signature of a path is a collection of iterated integrals, commonly used for solving differential equations. We show that the path signature, used as a set of features for consumption by a convolutional neural network (CNN), improves the accuracy of online character recognition---that is the task of reading characters represented as a collection of paths. Using datasets of letters, numbers, Assamese and Chinese characters, we show that the first, second, and even the third iterated integrals contain useful information for consumption by a CNN. On the CASIA-OLHWDB1.1 3755 Chinese character dataset, our approach gave a test error of 3.58%, compared with 5.61% for a traditional CNN [Ciresan et al.]. A CNN trained on the CASIA-OLHWDB1.0-1.2 datasets won the ICDAR2013 Online Isolated Chinese Character recognition competition. Computationally, we have developed a sparse CNN implementation that make it practical to train CNNs with many layers of max-pooling. Extending the MNIST dataset by translations, our sparse CNN gets a test error of 0.31%.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here