Sparse canonical correlation analysis

30 May 2017  ·  Xiaotong Suo, Victor Minden, Bradley Nelson, Robert Tibshirani, Michael Saunders ·

Canonical correlation analysis was proposed by Hotelling [6] and it measures linear relationship between two multidimensional variables. In high dimensional setting, the classical canonical correlation analysis breaks down. We propose a sparse canonical correlation analysis by adding l1 constraints on the canonical vectors and show how to solve it efficiently using linearized alternating direction method of multipliers (ADMM) and using TFOCS as a black box. We illustrate this idea on simulated data.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here