Sparse Coding for Learning Interpretable Spatio-Temporal Primitives

Sparse coding has recently become a popular approach in computer vision to learn dictionaries of natural images. In this paper we extend sparse coding to learn interpretable spatio-temporal primitives of human motion. We cast the problem of learning spatio-temporal primitives as a tensor factorization problem and introduce constraints to learn interpretable primitives. In particular, we use group norms over those tensors, diagonal constraints on the activations as well as smoothness constraints that are inherent to human motion. We demonstrate the effectiveness of our approach to learn interpretable representations of human motion from motion capture data, and show that our approach outperforms recently developed matching pursuit and sparse coding algorithms.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here