Sparse-Input Neural Network using Group Concave Regularization

1 Jul 2023  ·  Bin Luo, Susan Halabi ·

Simultaneous feature selection and non-linear function estimation are challenging, especially in high-dimensional settings where the number of variables exceeds the available sample size in modeling. In this article, we investigate the problem of feature selection in neural networks. Although the group LASSO has been utilized to select variables for learning with neural networks, it tends to select unimportant variables into the model to compensate for its over-shrinkage. To overcome this limitation, we propose a framework of sparse-input neural networks using group concave regularization for feature selection in both low-dimensional and high-dimensional settings. The main idea is to apply a proper concave penalty to the $l_2$ norm of weights from all outgoing connections of each input node, and thus obtain a neural net that only uses a small subset of the original variables. In addition, we develop an effective algorithm based on backward path-wise optimization to yield stable solution paths, in order to tackle the challenge of complex optimization landscapes. Our extensive simulation studies and real data examples demonstrate satisfactory finite sample performances of the proposed estimator, in feature selection and prediction for modeling continuous, binary, and time-to-event outcomes.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods