Sparse Inverse Covariance Estimation with Calibration

NeurIPS 2013  ·  Tuo Zhao, Han Liu ·

We propose a semiparametric procedure for estimating high dimensional sparse inverse covariance matrix. Our method, named ALICE, is applicable to the elliptical family. Computationally, we develop an efficient dual inexact iterative projection (${\rm D_2}$P) algorithm based on the alternating direction method of multipliers (ADMM). Theoretically, we prove that the ALICE estimator achieves the parametric rate of convergence in both parameter estimation and model selection. Moreover, ALICE calibrates regularizations when estimating each column of the inverse covariance matrix. So it not only is asymptotically tuning free, but also achieves an improved finite sample performance. We present numerical simulations to support our theory, and a real data example to illustrate the effectiveness of the proposed estimator.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here