Sparse Linear Concept Discovery Models

21 Aug 2023  ·  Konstantinos P. Panousis, Dino Ienco, Diego Marcos ·

The recent mass adoption of DNNs, even in safety-critical scenarios, has shifted the focus of the research community towards the creation of inherently intrepretable models. Concept Bottleneck Models (CBMs) constitute a popular approach where hidden layers are tied to human understandable concepts allowing for investigation and correction of the network's decisions. However, CBMs usually suffer from: (i) performance degradation and (ii) lower interpretability than intended due to the sheer amount of concepts contributing to each decision. In this work, we propose a simple yet highly intuitive interpretable framework based on Contrastive Language Image models and a single sparse linear layer. In stark contrast to related approaches, the sparsity in our framework is achieved via principled Bayesian arguments by inferring concept presence via a data-driven Bernoulli distribution. As we experimentally show, our framework not only outperforms recent CBM approaches accuracy-wise, but it also yields high per example concept sparsity, facilitating the individual investigation of the emerging concepts.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods