Distributed Sparse Normal Means Estimation with Sublinear Communication

5 Feb 2021  ·  Chen Amiraz, Robert Krauthgamer, Boaz Nadler ·

We consider the problem of sparse normal means estimation in a distributed setting with communication constraints. We assume there are $M$ machines, each holding $d$-dimensional observations of a $K$-sparse vector $\mu$ corrupted by additive Gaussian noise. The $M$ machines are connected in a star topology to a fusion center, whose goal is to estimate the vector $\mu$ with a low communication budget. Previous works have shown that to achieve the centralized minimax rate for the $\ell_2$ risk, the total communication must be high - at least linear in the dimension $d$. This phenomenon occurs, however, at very weak signals. We show that at signal-to-noise ratios (SNRs) that are sufficiently high - but not enough for recovery by any individual machine - the support of $\mu$ can be correctly recovered with significantly less communication. Specifically, we present two algorithms for distributed estimation of a sparse mean vector corrupted by either Gaussian or sub-Gaussian noise. We then prove that above certain SNR thresholds, with high probability, these algorithms recover the correct support with total communication that is sublinear in the dimension $d$. Furthermore, the communication decreases exponentially as a function of signal strength. If in addition $KM\ll \tfrac{d}{\log d}$, then with an additional round of sublinear communication, our algorithms achieve the centralized rate for the $\ell_2$ risk. Finally, we present simulations that illustrate the performance of our algorithms in different parameter regimes.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here