Sparse principal component regression with adaptive loading

Principal component regression (PCR) is a two-stage procedure that selects some principal components and then constructs a regression model regarding them as new explanatory variables. Note that the principal components are obtained from only explanatory variables and not considered with the response variable... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet