Regularization and feature selection for large dimensional data

6 Dec 2017  ·  Nand Sharma, Prathamesh Verlekar, Rehab Ashary, Sui Zhiquan ·

Feature selection has evolved to be an important step in several machine learning paradigms. In domains like bio-informatics and text classification which involve data of high dimensions, feature selection can help in drastically reducing the feature space... In cases where it is difficult or infeasible to obtain sufficient number of training examples, feature selection helps overcome the curse of dimensionality which in turn helps improve performance of the classification algorithm. The focus of our research here are five embedded feature selection methods which use either the ridge regression, or Lasso regression, or a combination of the two in the regularization part of the optimization function. We evaluate five chosen methods on five large dimensional datasets and compare them on the parameters of sparsity and correlation in the datasets and their execution times. read more

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here