Spatial Analysis Made Easy with Linear Regression and Kernels

22 Feb 2019Philip MiltonEmanuele GiorgiSamir Bhatt

Kernel methods are an incredibly popular technique for extending linear models to non-linear problems via a mapping to an implicit, high-dimensional feature space. While kernel methods are computationally cheaper than an explicit feature mapping, they are still subject to cubic cost on the number of points... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.