Spatio-temporal graph neural networks for multi-site PV power forecasting

29 Jul 2021  ·  Jelena Simeunović, Baptiste Schubnel, Pierre-Jean Alet, Rafael E. Carrillo ·

Accurate forecasting of solar power generation with fine temporal and spatial resolution is vital for the operation of the power grid. However, state-of-the-art approaches that combine machine learning with numerical weather predictions (NWP) have coarse resolution. In this paper, we take a graph signal processing perspective and model multi-site photovoltaic (PV) production time series as signals on a graph to capture their spatio-temporal dependencies and achieve higher spatial and temporal resolution forecasts. We present two novel graph neural network models for deterministic multi-site PV forecasting dubbed the graph-convolutional long short term memory (GCLSTM) and the graph-convolutional transformer (GCTrafo) models. These methods rely solely on production data and exploit the intuition that PV systems provide a dense network of virtual weather stations. The proposed methods were evaluated in two data sets for an entire year: 1) production data from 304 real PV systems, and 2) simulated production of 1000 PV systems, both distributed over Switzerland. The proposed models outperform state-of-the-art multi-site forecasting methods for prediction horizons of six hours ahead. Furthermore, the proposed models outperform state-of-the-art single-site methods with NWP as inputs on horizons up to four hours ahead.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods