Specific Beamforming for Multi-UAV Networks: A Dual Identity-based ISAC Approach

28 Jun 2023  ·  Yanpeng Cui, Qixun Zhang, Zhiyong Feng, Fan Liu, Ce Shi, Jinpo Fan, Ping Zhang ·

Beam alignment is essential to compensate for the high path loss in the millimeter-wave (mmWave) Unmanned Aerial Vehicle (UAV) network. The integrated sensing and communication (ISAC) technology has been envisioned as a promising solution to enable efficient beam alignment in the dynamic UAV network. However, since the digital identity (D-ID) is not contained in the reflected echoes, the conventional ISAC solution has to either periodically feed back the D-ID to distinguish beams for multi-UAVs or suffer the beam errors induced by the separation of D-ID and physical identity (P-ID). This paper presents a novel dual identity association (DIA)-based ISAC approach, the first solution that enables specific, fast, and accurate beamforming towards multiple UAVs. In particular, the P-IDs extracted from echo signals are distinguished dynamically by calculating the feature similarity according to their prevalence, and thus the DIA is accurately achieved. We also present the extended Kalman filtering scheme to track and predict P-IDs, and the specific beam is thereby effectively aligned toward the intended UAVs in dynamic networks. Numerical results show that the proposed DIA-based ISAC solution significantly outperforms the conventional methods in association accuracy and communication performance.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here