Specification sketching for Linear Temporal Logic

14 Jun 2022  ·  Simon Lutz, Daniel Neider, Rajarshi Roy ·

Virtually all verification and synthesis techniques assume that the formal specifications are readily available, functionally correct, and fully match the engineer's understanding of the given system. However, this assumption is often unrealistic in practice: formalizing system requirements is notoriously difficult, error-prone, and requires substantial training. To alleviate this severe hurdle, we propose a fundamentally novel approach to writing formal specifications, named specification sketching for Linear Temporal Logic (LTL). The key idea is that an engineer can provide a partial LTL formula, called an LTL sketch, where parts that are hard to formalize can be left out. Given a set of examples describing system behaviors that the specification should or should not allow, the task of a so-called sketching algorithm is then to complete a given sketch such that the resulting LTL formula is consistent with the examples. We show that deciding whether a sketch can be completed falls into the complexity class NP and present two SAT-based sketching algorithms. We also demonstrate that sketching is a practical approach to writing formal specifications using a prototype implementation.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here