Paper

Spectral Clustering of Graphs with the Bethe Hessian

Spectral clustering is a standard approach to label nodes on a graph by studying the (largest or lowest) eigenvalues of a symmetric real matrix such as e.g. the adjacency or the Laplacian. Recently, it has been argued that using instead a more complicated, non-symmetric and higher dimensional operator, related to the non-backtracking walk on the graph, leads to improved performance in detecting clusters, and even to optimal performance for the stochastic block model... (read more)

Results in Papers With Code
(↓ scroll down to see all results)