Speech Privacy Leakage from Shared Gradients in Distributed Learning

21 Feb 2023  ·  Zhuohang Li, Jiaxin Zhang, Jian Liu ·

Distributed machine learning paradigms, such as federated learning, have been recently adopted in many privacy-critical applications for speech analysis. However, such frameworks are vulnerable to privacy leakage attacks from shared gradients. Despite extensive efforts in the image domain, the exploration of speech privacy leakage from gradients is quite limited. In this paper, we explore methods for recovering private speech/speaker information from the shared gradients in distributed learning settings. We conduct experiments on a keyword spotting model with two different types of speech features to quantify the amount of leaked information by measuring the similarity between the original and recovered speech signals. We further demonstrate the feasibility of inferring various levels of side-channel information, including speech content and speaker identity, under the distributed learning framework without accessing the user's data.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here