Spiked Covariance Estimation from Modulo-Reduced Measurements

4 Oct 2021  ·  Elad Romanov, Or Ordentlich ·

Consider the rank-1 spiked model: $\bf{X}=\sqrt{\nu}\xi \bf{u}+ \bf{Z}$, where $\nu$ is the spike intensity, $\bf{u}\in\mathbb{S}^{k-1}$ is an unknown direction and $\xi\sim \mathcal{N}(0,1),\bf{Z}\sim \mathcal{N}(\bf{0},\bf{I})$. Motivated by recent advances in analog-to-digital conversion, we study the problem of recovering $\bf{u}\in \mathbb{S}^{k-1}$ from $n$ i.i.d. modulo-reduced measurements $\bf{Y}=[\bf{X}]\mod \Delta$, focusing on the high-dimensional regime ($k\gg 1$). We develop and analyze an algorithm that, for most directions $\bf{u}$ and $\nu=\mathrm{poly}(k)$, estimates $\bf{u}$ to high accuracy using $n=\mathrm{poly}(k)$ measurements, provided that $\Delta\gtrsim \sqrt{\log k}$. Up to constants, our algorithm accurately estimates $\bf{u}$ at the smallest possible $\Delta$ that allows (in an information-theoretic sense) to recover $\bf{X}$ from $\bf{Y}$. A key step in our analysis involves estimating the probability that a line segment of length $\approx\sqrt{\nu}$ in a random direction $\bf{u}$ passes near a point in the lattice $\Delta \mathbb{Z}^k$. Numerical experiments show that the developed algorithm performs well even in a non-asymptotic setting.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here