Spiking Semantic Communication for Feature Transmission with HARQ

13 Oct 2023  ·  Mengyang Wang, Jiahui Li, Mengyao Ma, Xiaopeng Fan ·

In Collaborative Intelligence (CI), the Artificial Intelligence (AI) model is divided between the edge and the cloud, with intermediate features being sent from the edge to the cloud for inference. Several deep learning-based Semantic Communication (SC) models have been proposed to reduce feature transmission overhead and mitigate channel noise interference. Previous research has demonstrated that Spiking Neural Network (SNN)-based SC models exhibit greater robustness on digital channels compared to Deep Neural Network (DNN)-based SC models. However, the existing SNN-based SC models require fixed time steps, resulting in fixed transmission bandwidths that cannot be adaptively adjusted based on channel conditions. To address this issue, this paper introduces a novel SC model called SNN-SC-HARQ, which combines the SNN-based SC model with the Hybrid Automatic Repeat Request (HARQ) mechanism. SNN-SC-HARQ comprises an SNN-based SC model that supports the transmission of features at varying bandwidths, along with a policy model that determines the appropriate bandwidth. Experimental results show that SNN-SC-HARQ can dynamically adjust the bandwidth according to the channel conditions without performance loss.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here