SROIQsigma is decidable

24 Jun 2014  ·  Jon Haël Brenas, Rachid Echahed, Martin Strecker ·

We consider a dynamic extension of the description logic $\mathcal{SROIQ}$. This means that interpretations could evolve thanks to some actions such as addition and/or deletion of an element (respectively, a pair of elements) of a concept (respectively, of a role)... The obtained logic is called $\mathcal{SROIQ}$ with explicit substitutions and is written $\mathcal{SROIQ^\sigma}$. Substitution is not treated as meta-operation that is carried out immediately, but the operation of substitution may be delayed, so that sub-formulae of $\mathcal{SROIQ}^\sigma$ are of the form $\Phi\sigma$, where $\Phi$ is a $\mathcal{SROIQ}$ formula and $\sigma$ is a substitution which encodes changes of concepts and roles. In this paper, we particularly prove that the satisfiability problem of $\mathcal{SROIQ}^\sigma$ is decidable. read more

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here