Stacked Ensemble Machine Learning for Range-Separation Parameters

Density functional theory-based high-throughput materials and drug discovery has achieved tremendous success in recent decades, but its power on organic semiconducting molecules suffered catastrophically from the self-interaction error until the nonempirical but expensive optimally tuned range-separated hybrid (OT-RSH) functionals were developed. An OT-RSH transitions from a short-range (semi)local functional to a long-range Hartree−Fock exchange at a distance characterized by a molecule-specific range-separation parameter (ω). Herein, we propose a stacked ensemble machine learning model that provides an accelerated alternative of OT-RSH based on system-dependent structural and electronic configurations. We trained ML-ωPBE, the first functional in our series, using a database of 1970 molecules with sufficient structural and functional diversity, and assessed its accuracy and efficiency using another 1956 molecules. Compared with nonempirical OT-ωPBE, ML-ωPBE reaches a mean absolute error of 0.00504a0−1 for optimal ω’s, reduces the computational cost by 2.66 orders of magnitude, and achieves comparable predictive power in optical properties.

PDF

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here