STACL: Simultaneous Translation with Implicit Anticipation and Controllable Latency using Prefix-to-Prefix Framework

Simultaneous translation, which translates sentences before they are finished, is useful in many scenarios but is notoriously difficult due to word-order differences. While the conventional seq-to-seq framework is only suitable for full-sentence translation, we propose a novel prefix-to-prefix framework for simultaneous translation that implicitly learns to anticipate in a single translation model. Within this framework, we present a very simple yet surprisingly effective wait-k policy trained to generate the target sentence concurrently with the source sentence, but always k words behind. Experiments show our strategy achieves low latency and reasonable quality (compared to full-sentence translation) on 4 directions: zh<->en and de<->en.

PDF Abstract ACL 2019 PDF ACL 2019 Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here