State estimation of a carbon capture process through POD model reduction and neural network approximation

11 Apr 2023  ·  Siyu Liu, Xunyuan Yin, Jinfeng Liu ·

This paper presents an efficient approach for state estimation of post-combustion CO2 capture plants (PCCPs) by using reduced-order neural network models. The method involves extracting lower-dimensional feature vectors from high-dimensional operational data of the PCCP and constructing a reduced-order process model using proper orthogonal decomposition (POD). Multi-layer perceptron (MLP) neural networks capture the dominant dynamics of the process and train the network parameters with low-dimensional data obtained from open-loop simulations. The proposed POD-MLP model can be used as the basis for estimating the states of PCCPs at a significantly decreased computational cost. For state estimation, a reduced-order extended Kalman filtering (EKF) scheme based on the POD-MLP model is developed. Our simulations demonstrate that the proposed POD-MLP modeling approach reduces computational complexity compared to the POD-only model for nonlinear systems. Additionally, the POD-MLP-EKF algorithm can accurately reconstruct the full state information of PCCPs while significantly improving computational efficiency compared to the EKF based on the original PCCP model.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here