State of the Art Optical Character Recognition of 19th Century Fraktur Scripts using Open Source Engines

In this paper we evaluate Optical Character Recognition (OCR) of 19th century Fraktur scripts without book-specific training using mixed models, i.e. models trained to recognize a variety of fonts and typesets from previously unseen sources. We describe the training process leading to strong mixed OCR models and compare them to freely available models of the popular open source engines OCRopus and Tesseract as well as the commercial state of the art system ABBYY... (read more)

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet