State Space Closure: Revisiting Endless Online Level Generation via Reinforcement Learning

6 Dec 2022  ·  Ziqi Wang, Tianye Shu, Jialin Liu ·

In this paper, we revisit endless online level generation with the recently proposed experience-driven procedural content generation via reinforcement learning (EDRL) framework. Inspired by an observation that EDRL tends to generate recurrent patterns, we formulate a notion of state space closure which makes any stochastic state appeared possibly in an infinite-horizon online generation process can be found within a finite-horizon. Through theoretical analysis, we find that even though state space closure arises a concern about diversity, it generalises EDRL trained with a finite-horizon to the infinite-horizon scenario without deterioration of content quality. Moreover, we verify the quality and the diversity of contents generated by EDRL via empirical studies, on the widely used Super Mario Bros. benchmark. Experimental results reveal that the diversity of levels generated by EDRL is limited due to the state space closure, whereas their quality does not deteriorate in a horizon which is longer than the one specified in the training. Concluding our outcomes and analysis, future work on endless online level generation via reinforcement learning should address the issue of diversity while assuring the occurrence of state space closure and quality.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here