STEM: Unleashing the Power of Embeddings for Multi-task Recommendation

16 Aug 2023  ·  Liangcai Su, Junwei Pan, Ximei Wang, Xi Xiao, Shijie Quan, Xihua Chen, Jie Jiang ·

Multi-task learning (MTL) has gained significant popularity in recommender systems as it enables simultaneous optimization of multiple objectives. A key challenge in MTL is negative transfer, but existing studies explored negative transfer on all samples, overlooking the inherent complexities within them. We split the samples according to the relative amount of positive feedback among tasks. Surprisingly, negative transfer still occurs in existing MTL methods on samples that receive comparable feedback across tasks. Existing work commonly employs a shared-embedding paradigm, limiting the ability of modeling diverse user preferences on different tasks. In this paper, we introduce a novel Shared and Task-specific EMbeddings (STEM) paradigm that aims to incorporate both shared and task-specific embeddings to effectively capture task-specific user preferences. Under this paradigm, we propose a simple model STEM-Net, which is equipped with an All Forward Task-specific Backward gating network to facilitate the learning of task-specific embeddings and direct knowledge transfer across tasks. Remarkably, STEM-Net demonstrates exceptional performance on comparable samples, achieving positive transfer. Comprehensive evaluation on three public MTL recommendation datasets demonstrates that STEM-Net outperforms state-of-the-art models by a substantial margin. Our code is released at https://github.com/LiangcaiSu/STEM.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here