Stimulating Diffusion Model for Image Denoising via Adaptive Embedding and Ensembling

8 Jul 2023  ยท  Tong Li, Hansen Feng, Lizhi Wang, Zhiwei Xiong, Hua Huang ยท

Image denoising is a fundamental problem in computational photography, where achieving high perception with low distortion is highly demanding. Current methods either struggle with perceptual quality or suffer from significant distortion. Recently, the emerging diffusion model has achieved state-of-the-art performance in various tasks and demonstrates great potential for image denoising. However, stimulating diffusion models for image denoising is not straightforward and requires solving several critical problems. For one thing, the input inconsistency hinders the connection between diffusion models and image denoising. For another, the content inconsistency between the generated image and the desired denoised image introduces distortion. To tackle these problems, we present a novel strategy called the Diffusion Model for Image Denoising (DMID) by understanding and rethinking the diffusion model from a denoising perspective. Our DMID strategy includes an adaptive embedding method that embeds the noisy image into a pre-trained unconditional diffusion model and an adaptive ensembling method that reduces distortion in the denoised image. Our DMID strategy achieves state-of-the-art performance on both distortion-based and perception-based metrics, for both Gaussian and real-world image denoising.The code is available at https://github.com/Li-Tong-621/DMID.

PDF Abstract
Task Dataset Model Metric Name Metric Value Global Rank Result Benchmark
Color Image Denoising CBSD68 sigma100 DMID-d PSNR 25.96 # 1
SSIM 0.8413 # 1
LPIPS 0.283 # 2
Color Image Denoising CBSD68 sigma100 DMID-p PSNR 23.94 # 2
SSIM 0.7840 # 2
LPIPS 0.208 # 1
Color Image Denoising CBSD68 sigma15 DMID-d PSNR 34.45 # 3
Color Image Denoising CBSD68 sigma150 DMID-d PSNR 24.54 # 1
SSIM 0.8001 # 1
LPIPS 0.361 # 2
Color Image Denoising CBSD68 sigma150 DMID-p PSNR 22.47 # 2
SSIM 0.7314 # 2
LPIPS 0.264 # 1
Color Image Denoising CBSD68 sigma200 DMID-p PSNR 21.37 # 2
SSIM 0.6842 # 2
LPIPS 0.312 # 1
Color Image Denoising CBSD68 sigma200 DMID-d PSNR 23.57 # 1
SSIM 0.7686 # 1
LPIPS 0.392 # 2
Color Image Denoising CBSD68 sigma25 DMID-d PSNR 31.86 # 2
Color Image Denoising CBSD68 sigma250 DMID-p PSNR 20.77 # 2
SSIM 0.6610 # 2
LPIPS 0.352 # 1
Color Image Denoising CBSD68 sigma250 DMID-d PSNR 22.88 # 1
SSIM 0.7462 # 1
LPIPS 0.455 # 2
Color Image Denoising CBSD68 sigma50 DMID-d (MMSE) PSNR 28.69 # 3
SSIM 0.9029 # 1
LPIPS 0.162 # 2
Color Image Denoising CBSD68 sigma50 DMID-d PSNR 28.69 # 3
Color Image Denoising CBSD68 sigma50 DMID-p PSNR 26.63 # 16
SSIM 0.8605 # 2
LPIPS 0.122 # 1
Color Image Denoising ImageNet sigma100 DMID-d PSNR 27.00 # 1
SSIM 0.8626 # 1
LPIPS 0.201 # 2
Color Image Denoising ImageNet sigma100 DMID-p PSNR 24.61 # 2
SSIM 0.7987 # 2
LPIPS 0.156 # 1
Color Image Denoising ImageNet sigma150 DMID-d LPIPS 0.295 # 2
PSNR 25.39 # 1
SSIM 0.8236 # 1
Color Image Denoising ImageNet sigma150 DMID-p LPIPS 0.259 # 1
PSNR 22.94 # 2
SSIM 0.6932 # 2
Color Image Denoising ImageNet sigma200 DMID-d LPIPS 0.295 # 2
PSNR 24.25 # 1
SSIM 0.7915 # 1
Color Image Denoising ImageNet sigma200 DMID-p LPIPS 0.259 # 1
PSNR 21.56 # 2
SSIM 0.6932 # 2
Color Image Denoising ImageNet sigma250 DMID-d SSIM 0.7675 # 1
LPIPS 0.346 # 2
PSNR 23.44 # 1
Color Image Denoising ImageNet sigma250 DMID-p SSIM 0.6701 # 2
LPIPS 0.289 # 1
PSNR 20.87 # 2
Color Image Denoising ImageNet sigma50 DMID-d SSIM 0.9157 # 1
PSNR 29.9 # 1
LPIPS 0.114 # 2
Color Image Denoising ImageNet sigma50 DMID-p SSIM 0.8722 # 2
PSNR 27.59 # 2
LPIPS 0.087 # 1
Color Image Denoising Kodak24 sigma100 DMID-d PSNR 27.5 # 1
SSIM 0.8682 # 1
LPIPS 0.274 # 2
Color Image Denoising Kodak24 sigma100 DMID-p PSNR 25.31 # 2
SSIM 0.8107 # 2
LPIPS 0.211 # 1
Color Image Denoising Kodak24 sigma15 DMID-d PSNR 35.51 # 1
Color Image Denoising Kodak24 sigma150 DMID-p PSNR 24.06 # 2
SSIM 0.7707 # 2
LPIPS 0.211 # 1
Color Image Denoising Kodak24 sigma150 DMID-d PSNR 26.08 # 1
SSIM 0.8336 # 1
LPIPS 0.348 # 2
Color Image Denoising Kodak24 sigma200 DMID-d PSNR 25.08 # 1
SSIM 0.8054 # 1
LPIPS 0.382 # 2
Color Image Denoising Kodak24 sigma200 DMID-p PSNR 22.99 # 2
SSIM 0.7311 # 2
LPIPS 0.318 # 1
Color Image Denoising Kodak24 sigma25 DMID-d PSNR 33.12 # 1
Color Image Denoising Kodak24 sigma250 DMID-d PSNR 24.4 # 1
SSIM 0.7853 # 1
LPIPS 0.446 # 2
Color Image Denoising Kodak24 sigma250 DMID-p PSNR 22.44 # 2
SSIM 0.7133 # 2
LPIPS 0.356 # 1
Color Image Denoising Kodak24 sigma50 DMID-p PSNR 27.9 # 9
SSIM 0.8770 # 2
LPIPS 0.131 # 1
Color Image Denoising Kodak24 sigma50 DMID-d(MMSE) PSNR 30.13 # 1
SSIM 0.9174 # 1
LPIPS 0.172 # 2
Color Image Denoising Kodak sigma50 DMID-d PSNR 30.14 # 1
Color Image Denoising McMaster sigma100 DMID-d SSIM 0.8990 # 1
LPIPS 0.206 # 2
PSNR 27.57 # 1
Color Image Denoising McMaster sigma100 DMID-p SSIM 0.8560 # 2
LPIPS 0.158 # 1
PSNR 25.37 # 2
Color Image Denoising McMaster sigma15 DMID-d PSNR 35.72 # 2
Color Image Denoising McMaster sigma150 DMID-d PSNR 25.89 # 1
SSIM 0.8672 # 1
LPIPS 0.267 # 2
Color Image Denoising McMaster sigma150 DMID-p PSNR 23.72 # 2
SSIM 0.8148 # 2
LPIPS 0.209 # 1
Color Image Denoising McMaster sigma200 DMID-p SSIM 0.7816 # 2
PSNR 22.51 # 2
LPIPS 0.252 # 1
Color Image Denoising McMaster sigma200 DMID-d SSIM 0.8392 # 1
PSNR 24.68 # 1
LPIPS 0.303 # 2
Color Image Denoising McMaster sigma25 DMID-d PSNR 33.49 # 2
Color Image Denoising McMaster sigma250 DMID-p SSIM 0.7553 # 2
PSNR 21.73 # 2
LPIPS 0.290 # 1
Color Image Denoising McMaster sigma250 DMID-d SSIM 0.8174 # 1
PSNR 23.81 # 1
LPIPS 0.359 # 2
Color Image Denoising McMaster sigma50 DMID-p PSNR 28.34 # 6
LPIPS 0.092 # 1
SSIM 0.9112 # 2
Color Image Denoising McMaster sigma50 DMID-d(MMSE) LPIPS 0.124 # 2
SSIM 0.9396 # 1
Color Image Denoising McMaster sigma50 DMID-d PSNR 30.51 # 2
Color Image Denoising urban100 sigma15 DMID-d Average PSNR 35.26 # 2
PSNR 35.26 # 3
Color Image Denoising Urban100 sigma25 DMID-d PSNR 33.11 # 3
Color Image Denoising Urban100 sigma50 DMID-d PSNR 30.28 # 2

Methods