On the Regularization Effect of Stochastic Gradient Descent applied to Least Squares

27 Jul 2020 Stefan Steinerberger

We study the behavior of stochastic gradient descent applied to $\|Ax -b \|_2^2 \rightarrow \min$ for invertible $A \in \mathbb{R}^{n \times n}$. We show that there is an explicit constant $c_{A}$ depending (mildly) on $A$ such that $$ \mathbb{E} ~\left\| Ax_{k+1}-b\right\|^2_{2} \leq \left(1 + \frac{c_{A}}{\|A\|_F^2}\right) \left\|A x_k -b \right\|^2_{2} - \frac{2}{\|A\|_F^2} \left\|A^T A (x_k - x)\right\|^2_{2}.$$ This is a curious inequality: the last term has one more matrix applied to the residual $u_k - u$ than the remaining terms: if $x_k - x$ is mainly comprised of large singular vectors, stochastic gradient descent leads to a quick regularization... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper