Stochastic Gradient Descent in Continuous Time: A Central Limit Theorem

11 Oct 2017  ·  Justin Sirignano, Konstantinos Spiliopoulos ·

Stochastic gradient descent in continuous time (SGDCT) provides a computationally efficient method for the statistical learning of continuous-time models, which are widely used in science, engineering, and finance. The SGDCT algorithm follows a (noisy) descent direction along a continuous stream of data. The parameter updates occur in continuous time and satisfy a stochastic differential equation. This paper analyzes the asymptotic convergence rate of the SGDCT algorithm by proving a central limit theorem (CLT) for strongly convex objective functions and, under slightly stronger conditions, for non-convex objective functions as well. An $L^{p}$ convergence rate is also proven for the algorithm in the strongly convex case. The mathematical analysis lies at the intersection of stochastic analysis and statistical learning.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here