Stochastic Gradient Methods with Preconditioned Updates

This work considers the non-convex finite sum minimization problem. There are several algorithms for such problems, but existing methods often work poorly when the problem is badly scaled and/or ill-conditioned, and a primary goal of this work is to introduce methods that alleviate this issue. Thus, here we include a preconditioner based on Hutchinson's approach to approximating the diagonal of the Hessian, and couple it with several gradient-based methods to give new scaled algorithms: Scaled SARAH and Scaled L-SVRG. Theoretical complexity guarantees under smoothness assumptions are presented. We prove linear convergence when both smoothness and the PL condition are assumed. Our adaptively scaled methods use approximate partial second-order curvature information and, therefore, can better mitigate the impact of badly scaled problems. This improved practical performance is demonstrated in the numerical experiments also presented in this work.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here