Stochastic Gradient Methods with Compressed Communication for Decentralized Saddle Point Problems

28 May 2022  ·  Chhavi Sharma, Vishnu Narayanan, P. Balamurugan ·

We develop two compression based stochastic gradient algorithms to solve a class of non-smooth strongly convex-strongly concave saddle-point problems in a decentralized setting (without a central server). Our first algorithm is a Restart-based Decentralized Proximal Stochastic Gradient method with Compression (C-RDPSG) for general stochastic settings. We provide rigorous theoretical guarantees of C-RDPSG with gradient computation complexity and communication complexity of order $\mathcal{O}( (1+\delta)^4 \frac{1}{L^2}{\kappa_f^2}\kappa_g^2 \frac{1}{\epsilon} )$, to achieve an $\epsilon$-accurate saddle-point solution, where $\delta$ denotes the compression factor, $\kappa_f$ and $\kappa_g$ denote respectively the condition numbers of objective function and communication graph, and $L$ denotes the smoothness parameter of the smooth part of the objective function. Next, we present a Decentralized Proximal Stochastic Variance Reduced Gradient algorithm with Compression (C-DPSVRG) for finite sum setting which exhibits gradient computation complexity and communication complexity of order $\mathcal{O} \left((1+\delta) \max \{\kappa_f^2, \sqrt{\delta}\kappa^2_f\kappa_g,\kappa_g \} \log\left(\frac{1}{\epsilon}\right) \right)$. Extensive numerical experiments show competitive performance of the proposed algorithms and provide support to the theoretical results obtained.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here