Stochastic Network Design in Bidirected Trees

We investigate the problem of stochastic network design in bidirected trees. In this problem, an underlying phenomenon (e.g., a behavior, rumor, or disease) starts at multiple sources in a tree and spreads in both directions along its edges. Actions can be taken to increase the probability of propagation on edges, and the goal is to maximize the total amount of spread away from all sources. Our main result is a rounded dynamic programming approach that leads to a fully polynomial-time approximation scheme (FPTAS), that is, an algorithm that can find (1−ε)-optimal solutions for any problem instance in time polynomial in the input size and 1/ε. Our algorithm outperforms competing approaches on a motivating problem from computational sustainability to remove barriers in river networks to restore the health of aquatic ecosystems.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here